If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+2x-290=0
a = 1; b = 2; c = -290;
Δ = b2-4ac
Δ = 22-4·1·(-290)
Δ = 1164
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1164}=\sqrt{4*291}=\sqrt{4}*\sqrt{291}=2\sqrt{291}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(2)-2\sqrt{291}}{2*1}=\frac{-2-2\sqrt{291}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(2)+2\sqrt{291}}{2*1}=\frac{-2+2\sqrt{291}}{2} $
| n204620=5 | | -16=5(3q-10)-5q | | 5x+8=113 | | 5.8+3.5z(z-4)=3.5(z+2) | | n24620=5 | | 2x+21=7+x | | w+2+2w=6+5w | | 2y×y×5=360 | | 3*5x+22=28 | | -(x-4)=14 | | 4w+2w=140 | | -2(x+3)=-4(x+2) | | 5+2n+6n=-6+7n | | 4x-42=106 | | 3(1+d)+2=2(d+2)-4 | | 4x+13=-7x | | 8e+3(5-e)=10+e | | 34=5v+10-2v | | 67x+78=212 | | -8d+11=-21 | | 6(4m-7)-m=38+7m | | 2(x-9)-5=-3(-8x+3)-4x | | 2m+4m=6 | | 4g+4(-3+2g)=-1g | | 50k+70=40k+80 | | 12x-15+22-4=43 | | 6.3x-22=-10 | | 11x+3-12=4 | | 2+4x=-54 | | 4x+6=6x–10 | | 5+3a=108 | | 2.4x-42=106 |